GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究Research on adaptive Kalman filter algorithm for GPS/INS loosely coupled integrated navigation
周先林;张慧君;和涛;李孝辉;
摘要(Abstract):
针对常规卡尔曼滤波应用在GPS/INS组合导航时,由于量测数据出现异常值或系统状态模型不准确而造成的滤波精度下降问题,提出了一种基于新息的自适应卡尔曼滤波算法(AKF)。该算法首先通过卡方检验检测出量测异常值,在量测异常值处调整量测噪声方差阵来抑制滤波发散;在此基础上根据新息协方差的计算值与新息协方差的预测值的粗略比率,调整系统噪声方差阵,从而提高整体滤波精度。通过跑车试验,对本文提出的AKF算法进行了验证。试验结果表明:本文提出的AKF算法较常规卡尔曼滤波算法在经度、纬度误差(均方根)上分别降低了67%,34%,在东向速度、北向速度误差(均方根)上分别降低了47%,38%。从而证明了该算法能有效地抑制由量测异常值导致的状态估计误差,防止滤波发散,提高滤波稳定性。
关键词(KeyWords): 组合导航;自适应卡尔曼滤波;新息;噪声方差
基金项目(Foundation): 基础研究重大项目前期研究专项资助(11703030)
作者(Author): 周先林;张慧君;和涛;李孝辉;
Email:
DOI: 10.13875/j.issn.1674-0637.2020-03-0222-09
参考文献(References):
- [1]王洪先.陆用惯性导航系统技术发展综述[J].光学与光电技术, 2019, 17(6):77-85.
- [2]杨晓明,王胜利,王海霞,等.基于EKF的GNSS/SINS组合导航系统应用[J].山东科技大学学报(自然科学版), 2019,38(6):114-122.
- [3]崔杉,熊力.全球卫星导航系统[J].电子制作, 2015(16):47.
- [4]汪勇,丁金学.全球卫星导航系统的市场应用前景[J].中国航天, 2012(9):30-36.
- [5]樊宇,程全. GPS与惯性导航系统的组合应用研究[J].制造业自动化, 2015(3):74-75.
- [6]胡锋,孙国基. Kalman滤波的抗野值修正[J].自动化学报, 1999, 25(5):692-696.
- [7] WU F, YANG Y, CUI X. Application of adaptive factor based on partial state discrepancy in tight coupled GPS/INS integration[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):156-159.
- [8] WU F M, NIE J L, HE Z B. Classified adaptive filtering to GPS/INS integrated navigation based on predicted residuals and selecting weight filtering[J]. Geomatics&Information Science of Wuhan University, 2012, 37(3):261-264.
- [9] YANG Y, HE H, XU G. Adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy, 2001, 75(2-3):109-116.
- [10] YANG Y, XU T. An adaptive Kalman filter based on sage windowing weights and variance components[J]. Journal of Navigation, 2003, 56(2):231-240.
- [11]申逸. Kalman滤波技术在目标跟踪中的应用研究[D].长沙:国防科学技术大学, 2006.
- [12]杨元喜.动态Kalman滤波模型误差的影响[J].测绘科学, 2006, 31(1):17-18.
- [13]姜庆峰,桑渤,潘泉有.基于DOP值的GPS/INS组合导航滤波方法[J].海洋测绘, 2016, 36(1):59-62.
- [14]田宠,王兴亮,卢艳娥.一种改进的自适应指数加权衰减记忆滤波算法[J].武汉理工大学学报, 2011, 33(11):147-152
- [15]蔡佳,黄长强,井会锁,等.基于指数加权的改进衰减记忆自适应滤波算法[J].探测与控制学报, 2013, 35(4):21-26.
- [16] ZHAO L, LIU J. An improved adaptive filtering algorithm with applications in integrated navigation[C]//IEEE International Conference on Digital Manufacturing&automation, 2012:182-185.
- [17]谭攀,伍仲南,康跃耀.抑制卡尔曼滤波发散的组合导航算法研究[J].地理空间信息, 2019, 17(9):109-112.
- [18] SAGE A P, HUSSA G W. Adaptive filtering with unknown prior statistics[C]//Proceedings of Joint Automatic Control Conference. Boulder, USA:ASME, 1969:760-769.
- [19]鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报, 2007(15):3503-3505.
- [20]徐恩松,陆文华,刘云飞,等.基于卡尔曼滤波的数据融合算法与应用研究[J/OL].计算机技术与发展, 2020(5):1-7.
- [21]付梦印,邓志红,闫莉萍. Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社, 2010:111-118.
- [22]袁美桂,严玉国,庞春雷,等.改进的自适应Kalman滤波在GPS/SINS中的应用[J].空军工程大学学报(自然科学版),2015, 16(5):65-69.
- [23]沈凯,管雪元,李文胜.扩展卡尔曼滤波在组合导航中的应用[J].传感器与微系统, 2017, 36(8):158-160.