光纤时频传递技术进展Technical progress of fiber-based time and frequency transfer
杨文哲;杨宏雷;赵环;王学运;张升康;
摘要(Abstract):
光纤信道具有传输稳定、带宽大、不易受干扰等特点,近年来在高精度时间频率传递方面得到广泛的应用。目前,在区域地区内通过光纤网络传递时间频率信号的实现方案主要分为3类:光纤微波时间频率传递方案、光纤光频传递方案、基于光学频率梳的光纤时间频率传递方案。最新的报道表明,光纤微波时间频率传递方案的频率传递稳定度已达到5×10~(-19)/d,时间传递稳定度达到11 ps/d;光纤光频传递方案的频率传递稳定度达到7.5×10~(-20)/10 ks;基于光学频率梳的光纤时间频率传递方案的频率传递稳定度达到1.7×10~(-18)/100 s,时间传递稳定度达到飞秒量级。鉴于光纤时频传递技术的飞速发展,综述了光纤时间频率传递技术的发展历史,总结了各类光纤时频传递的具体实现方案及其性能,评述了各种光纤时频传递的实现方案。
关键词(KeyWords): 光纤网络;时间传递;频率传递
基金项目(Foundation):
作者(Author): 杨文哲;杨宏雷;赵环;王学运;张升康;
Email:
DOI: 10.13875/j.issn.1674-0637.2019-03-0214-10
参考文献(References):
- [1]PETIT G. The long term stability of EAL and TAI(revisited)[C]//2007 Frequency Control Symposium, Geneva:Joint with the21st European Frequency and Time Forum, 2007.
- [2]SCHILLER S, TINO G M, GILL P, et al. Einstein gravity explorer a medium-class fundamental physics mission[J].Experimental Astronomy, 2010, 23(2):573-610.
- [3]WOLF P, BORDéC J, CLAIRON A, et al. Quantum physics exploring gravity in the outer solar system:the SAGAS project[J].Experimental Astronomy, 2009, 23(2):651-687.
- [4]SHELKOVNIKOV A, BUTCHER R J, CHARDONNET C, et al. Stability of the proton-to-electron mass ratio[J]. Physical Review Letters, 2008, 100(15):150801.
- [5]BONDARESCU R, BONDARESCU M, HETéNYI G, et al. Geophysical applicability of atomic clocks:direct continental geoid mapping[J]. Geophysical Journal International, 2012, 191(1):78-82.
- [6]CLICHE J F, SHILLUE B. Precision timing control for radio astronomy:maintaining femtosecond synchronization in the Atacama Large Millimeter Array[J]. Control Systems IEEE, 2006, 26(1):19-26.
- [7]LEWANDOWSKI W, AZOUBIB J, KLEPCZYNSKI W J. GPS:primary tool for time transfer[J]. Proceedings of the IEEE,1999, 87(1):163-172.
- [8]LOMBARDI M, NELSON L M, NOVICK A N, et al. Time and frequency measurements using the global positioning system[J].Cal. Lab. Int. j. metrology, 2001, 24(10):848-853.
- [9]王学运,张升康.用于卫星双向时间传递系统的调制器设计[J].电讯技术, 2012, 52(3):400-403.
- [10]张升康,王宏博,杨军.卫星双向时间频率传递链路中的功率预算分析[J].宇航计测技术, 2009, 29(3):34-38.
- [11]HEAVNER T P, DONLEY E A, LEVI F, et al. First accuracy evaluation of NIST-F2[J]. Metrologia, 2014, 51(3):174-182.
- [12]CAMPBELL S L, HUTSON R B, Marti G E, et al. A fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2017,358(6359):90-94.
- [13]SCHNATZ H, BOLOGNINI G, CALONICO D, et al. NEAT-FT:the European fiber link collaboration[C]//European Frequency and Time Forum, Neuch_tel:Scientific Committee of the EFTF 2014, 2014.
- [14]LAYLAND J W, RAUCH L L. The evolution of technology in the deep space Network:a history of the advanced systems program[J]. Telecommunications&Data Acquisition Progress Report, 1994, 130:1-44.
- [15]LUTES G F. Experimental optical fiber communications link[R/OL].(1981-01-03)[2019-01-20]https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800024931.pdf.
- [16]LUTES G, CALHOUN M. Simultaneous transmission of a frequency reference and a time code over a single optical fiber[C]//Precise Time and Material Interval. California:Proceedings of the Twenty-first Annual Precise Time and Material Interval(PTTI)Applications and Planning Meeting, 1989.
- [17]CALHOUN M, KUHNLE P. Ultrastable reference frequency distribution utilizing a fiber optic link[C]//24th Annual Precise Time and Time Interval(PTTI)Applications and Planning Meeting, 1992.
- [18]CALHOUN M, SYDNOR R, DIENER W. A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for cassini radio science[R/OL].(1981-01-03)[2019-01-20]https://ipnpr.jpl.nasa.gov/progress_report/42-148/148L.pdf.
- [19]CALHOUN M, WANG R, KIRK A, et al. Stabilized reference frequency distribution for radio science with the cassini spacecraft and the deep space network[R/OL].(1981-01-03)[2019-01-20]https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800024931.pdf.
- [20]CALHOUN M, HUANG S, TJOELKER R L. Stable photonic links for frequency and time transfer in the deep-space network and antenna arrays[J]. Proceedings of the IEEE, 2007, 95(10):1931-1946.
- [21]YE J, PENG J L, JONES R J, et al. Delivery of high-stability optical and microwave frequency standards over an optical fiber network[J]. Journal of the Optical Society of America B, 2003, 20(7):1459-1467.
- [22]FUJIEDA M, KUMAGAI M, GOTOH T, et al. Ultrastable frequency dissemination via optical fiber at NICT[J]. IEEE Transactions on Instrumentation&Measurement, 2009, 58(4):1223-1228.
- [23]WANG B, GAO C, CHEN W L, et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy Level[J]. Scientific Reports, 2012, 2(2):556.
- [24]KREHLIK P, LIPI?SKI M,?LIWCZY?SK I, et al. Optical fibers in time and frequency transfer[J]. Measurement Science&Technology, 2010, 21(7):075302.
- [25]?LIWCZY?SK I,?UKAS Z, KREHLIK P, et al. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km[J]. Metrologia, 2013, 50(2):133-145.
- [26]HU L, WU G, ZHANG H, et al. A 300-kilometer optical fiber time transfer using bidirectional TDM dissemination[C]//Precise Time and Time Interval Systems and Applications Meeting, Boston:Proceedings of the 46th Annual Precise Time and Time Interval Systems and Applications Meeting, 2014.
- [27]KODET J, PáNEK P, PROCHáZKA I. Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability[J]. Metrologia, 2015, 53(1):18.
- [28]张浩,吴龟灵,陈建平.单纤双向时分复用光放大装置:中国, CN105790845A[P]. 2016.
- [29]FUJIEDA M, KUMAGAI M, NAGANO S. Coherent microwave transfer over a 204 km telecom fiber link by a cascaded system[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(1):168-174.
- [30]刘琴,韩圣龙,王家亮,等.采用级联方式实现430 km高精度频率传递[J].中国激光, 2016(9):205-209.
- [31]BAI Y, WANG B, GAO C, et al. Fiber-based multiple-access ultrastable radio and optical frequency dissemination[C]//2013Joint European Frequency and Time Forum&International Frequency Control Symposium, Progue:IEEE, 2013:1014-1017.
- [32]CHEN X, LU J, CUI Y, et al. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link[J]. Scientific Reports, 2015(5):18343.
- [33]PREDEHL K, GROSCHE G, RAUPACH S M, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080):441.
- [34]DROSTE S, OZIMEK F, UDEM T, et al. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Physical review letters, 2013, 111(11):110801.
- [35]刘涛,刘杰,邓雪,等.光纤时间频率信号传递研究[J].时间频率学报, 2016, 39(3):207-215.
- [36]HONG F L, MUSHA M, TAKAMOTO M, et al. Frequency measurement of a Sr optical lattice clock using a coherent optical link over a 120-km fiber[C]//2009 Conference on Quantum Electronics and Laser Science Conference, Baltimore:IEEE,2009:1-2.
- [37]FUJIEDA M, KUMAGAI M, NAGANO S, et al. All-optical link for direct comparison of distant optical clocks[J]. Optics Express, 2011, 19(17):16498.
- [38]LOPEZ O, CHARDONNET C, KLEIN A, et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Applied Physics B, 2013, 110(1):3-6.
- [39]MARRA G, SLAVíK R, MARGOLIS H S, et al. High-resolution microwave frequency transfer over an 86 km long optical fiber network using a mode-locked laser[J]. Optics Letters, 2011, 36(4):511-3.
- [40]CHEN X, LU J, CUI Y, et al. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link[J]. Scientific Reports, 2015(5):18343.
- [41]KIM J, CHEN J, ZHANG Z, et al. Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator[J]. Optics Letters, 2007, 32(9):1044-1046.
- [42]KIM J, COX J A, CHEN J, et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J].Nature Photonics, 2008, 2(12):733-736.
- [43]石凡,张升康,尚怀赢,等.基于飞秒脉冲相关法的高精度时间同步测量[J].系统工程与电子技术, 2016, 38(2):265-269.