63 | 0 | 18 |
下载次数 | 被引频次 | 阅读次数 |
时频传递技术在现代通信、导航和科学研究中扮演着关键角色,在基础科学实验、经济民生、国家安全等方面发挥着重要作用。随着高精度光学时钟及其各种应用的发展,星地时频传递精度越来越成为制约卫星时频传递网络发展的瓶颈,因此,开发自由空间激光时频传递技术已经成为未来卫星时频网络发展的关键。自由空间激光时频传递技术相较于微波时频传递技术可以显著提高空间时频传递精度,与光纤时频传递技术相比具有良好的铺设条件,适用于航空航天等环境应用。综述了国内外自由空间激光时频传递的研究现状,并对自由空间激光时频传递技术发展趋势进行展望。该技术将会朝着更高传递精度、网络化以及量子安全化的方向发展。空间激光时频传递技术的不断突破,不仅将推动现代通信和导航系统的发展,还对天文观测、地球物理、大型科学工程、物理常数测定等基础科学问题,具有重要意义。
Abstract:Time-frequency transfer technology plays a key role in modern communication, navigation and scientific research, and plays an important role in basic science experiments, economy and people's livelihood,and national security. With the development of high-precision optical clock and its various applications, satelliteterrestrial time-frequency transfer accuracy has increasingly become a bottleneck restricting the development of satellite time-frequency transfer network, so the development of free-space laser time-frequency transfer technology has become the key to the development of satellite time-frequency network in the future. Free-space laser time-frequency transfer technology can significantly improve spatial time-frequency transfer accuracy compared with microwave time-frequency transfer technology, and has good laying conditions compared with optical fiber time-frequency transfer technology, which is suitable for aerospace and other environmental applications. This paper reviews the research status of free-space laser time-frequency transmission at home and abroad, and looks forward to the development trend of free-space laser time-frequency transmission technology,which will develop in the direction of higher transmission accuracy, networking and quantum security. The continuous breakthroughs in space laser time-frequency transmission technology will not only promote the development of modern communication and navigation systems, but also have great significance to the basic scientific problems such as astronomical observation, geophysics, large-scale scientific engineering, and the determination of physical constants.
[1]方鹏程.本地及远程的自参考光钟比对关键技术研究[D].北京:中国科学院精密测量科学与技术创新研究院, 2022.
[2]武文俊.卫星双向时间频率传递的误差研究[D].西安:中国科学院国家授时中心, 2012.
[3]朱玺.光纤时间频率同步网络技术及应用[D].北京:清华大学物理系, 2016.
[4]袁一博.光纤网络时间频率传输与同步技术研究[D].北京:清华大学物理系, 2017.
[5] ESTEBAN H, PALACIO J, GALINDO F J, et al. Improved GPS-based time link calibration involving ROA and PTB[J]. IEEE Trans actions on UFFC, 2010, 57(3):714-720.
[6]王晔.基于GNSS共视的远程时间频率溯源的性能提升方法研究[D].北京:北京交通大学交通信息工程及控制, 2018.
[7]张小红,李星星,李盼. GNSS精密单点定位技术及应用进展[J].测绘学报, 2017, 46(10):1399-1407.
[8] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al.Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research, 1997, 102(B3):5005-5017.
[9]杨旭海,李孝辉,华宇,等.卫星授时与时间传递技术进展[J].导航定位与授时, 2021, 8(4):1-10.
[10]班亚,袁静,罗浩.基于NIMDO的精密时间频率溯源系统[J].计量科学与技术, 2021, 65(7):21-24+76.
[11] WANG W X, DONG S W, WU W J, et al. Evaluation of Asia-Europe TWSTFT links using the express-80satellite[J]. IEEE Instrumentation&Measurement Magazine, 2022, 25(6):19-24.
[12]高喆,王威雄,王翔,等.基于Express-80的卫星双向时间频率传递方法[J].导航定位学报, 2023, 11(4):24-30.
[13]杨文可.高精度站间双向时间频率传递关键技术研究[D].湖南:国防科技大学工学, 2014.
[14]张升康,杨文哲,王学运,等.卫星双向时间频率传递研究进展[J].导航定位与授时, 2021, 8(4):11-19.
[15]王翔,宋会杰,郭栋,等.卫星双向时间传递链路性能优化方法研究[J].时间频率学报, 2022, 45(4):254-261.
[16] LIN H T, HUANG Y J, TSENG W H, et al. Recent development and utilization of two-way satellite time and frequency transfer[J]. IEEE Instrumentation&Measurement Magazine, 2012, 27(1):13-22.
[17] VAN B D, AXELRAD P, PALO S. Design of a highstability heterogeneous clock system for small satellites in LEO[J]. GPS Solutions, 2021, 25(3):1-14.
[18]闫冰,张鹏,赵亚飞.面向低轨卫星导航的时频基准实现方法[C]//第十四届中国卫星导航年会——S04时间频率与精密授时,济南:中国卫星导航年会组委会, 2024:62-67.
[19]王翔,王为.我国天宫空间站研制及建造进展[J].科学通报, 2022, 67(34):4017-4028.
[20]白燕,陈晓锋,李玮,等.一种低轨航天器与北斗卫星高精度时间传递方法及其初步试验验证[J].中国科学:物理学力学天文学, 2023, 53(8):177-188.
[21]江中泽.基于光纤的时频传输技术研究[D].北京:北京邮电大学电子工程学院, 2022.
[22]卢樟健,蒙艳松,王国永,等.基于光梳的自由空间双向时频传递技术研究现状及趋势[J].空间电子技术, 2021, 18(1):1-7.
[23]姚渊博.基于激光的高精度时频传递技术研究[D].西安:中国空间技术研究院西安分院信息与通信工程, 2018.
[24]刘旭超,刘彦丹,张磊,等.时间频率传递技术研究进展[J].现代信息科技, 2021, 5(11):31-34.
[25] MENG W D, ZHANG H F, HUANG P C, et al. Design and experiment of onboard laser time transfer in Chinese Beidou Navigation Satellites[J]. Advances in Space Research, 2013, 51(6):951-958.
[26] PROCHAZKA I, YANG F M. Photon counting module for laser time transfer via Earth orbiting satellite[J]. Journal of Modern Optics, 2009, 56:253-260.
[27]戴辉.基于墨子号卫星的激光时间传递的研究[D].合肥:中国科学技术大学量子信息物理学, 2018.
[28] FRIDELANCE P, SAMAIN E, VEILLET C. T2L2-time transfer by Laser link:a new optical time transfer generation[J]. Experimental Astronomy, 1997, 7(3):191-207.
[29] SAMAIN E, FRIDELANCE P. Time transfer by laser link(T2L2)experiment on Mir[J]. Metrologia, 1998, 35(3):151-159.
[30] EXERTIER P, SAMAIN E, BONNEFOND P, et al. Status of the T2L2/Jason2 experiment[J]. Advances in Space Research, 2010, 46(12):1559-1565.
[31] SAMAIN E, ROVERA G D, TORRE J M, et al. Time transfer by laser link(T2L2)in noncommon view between Europe and China[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, 2018, 65(6):927-933.
[32]孙延光,徐敏,陈亚晴,等.自由空间激光时频传输研究进展[J].激光与光电子学进展, 2020, 57(17):43-51.
[33]杨文可,孟文东,韩文标,等.欧洲空间原子钟组ACES与超高精度时频传递技术新进展[J].天文学进展, 2016, 34(2):221-237.
[34] DEGNAN J J. Compact laser transponders for interplanetary ranging and time transfer[C]//Proceedings10th International Workshop on Laser Ranging. Shanghai:[s.n.], 1996:11-15.
[35] DEGNAN J J. Asynchronous laser transponders for precise interplanetary ranging and time transfer[J].Journal of Geodynamics, 2002, 34(3-4):551-594.
[36] CHEN Y, BIRNBAUM K M, HEMMATT H. Active laser ranging over planetary distances with millimeter accuracy[J].Applied Physics Letters, 2013, 102(24):241107.
[37] BLAZEJ J, PROCHAZKA I, KODET J, et al. Indoor demonstration of free-space picosecond two-way time transfer on single photon level[C]//Laser Communication and Propagation through the Atmosphere and OceansⅢ,[S.l.]:International Society for Optics and Photonics, 2014:9224:92241E.
[38] NIE J, YANG L, DUAN L. Atmospheric transfer of a radio frequency clock signal with a diode laser[J]. Applied Optics, 2012, 51(34):8190-8194.
[39]陆启明.空间时频传递中的线性光学采样技术研究[D].合肥:中国科学技术大学, 2019.
[40]苗菁.自由空间时间频率同步[D].北京:清华大学, 2015.
[41] CHEN Y Q, JIANG M Y, CHENG N, et al. Stable radiofrequency transfer over free space by passive phase correction[J]. IEEE Photonics Journal, 2019, 11(6):5503308(1-9).
[42] SPRENGER B, ZHANG J, LU ZH, et al. Atmospheric transfer of optical and radio frequency clock signals[J].Optics Letters, 2009, 34(7):965-967.
[43] DJERROUND K, SAMAIN E, CLAIRON A, et al. A coherent optical link through the turbulent atmosphere[J].EFTF-2010 24th European Frequency and Time Forum,2010:1-6.
[44] GOLLAPALLI R P, DUAN L Z. Atmospheric timing transfer using a femtosecond frequency comb[J]. IEEE Photonics Journal, 2010, 2(6):904-910.
[45] GIORGETTA F R, SWANN W C, Sinclair L C, et al.Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 2013, 7(6):435-439.
[46] SINCLAIR L C, BERGERON H, SWANN W C, et al.Comparing optical oscillators across the air to milliradians in phase and 10-17 in frequency[J]. Physical Review Letters, 2018, 120(5):050801.
[47] BODINE M I, ELLIS J L, SWANN W C, et al. Optical time-frequency transfer across a free-space, three-node network[J]. APL Photonics, 2020, 5(7):076113(1-8).
[48] SINCLAIR L C, SWANN W C, BERGERON H, et al.Synchronization of clocks through 12 km of strongly turbulent air over a city[J]. Applied Physics Letters, 2016,109(15):151104(1-4).
[49] SWANN W C, BODINE M I, KHADER I, et al.Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer[J]. Physical Review A, 2019, 99(2):23855(1-7).
[50] BERGERON H, SINCLAIR L C, SWANN W C, et al.Femtosecond time synchronization of optical clocks off of a flying quadcopter[J]. Nature Communications, 2019,10(1):9768-9776.
[51] KHADER I, BERGERON H, SINCLAIR L C, et al. Time synchronization over a free-space optical communication channel[J]. Optica, 2018, 5(12):1542-1548.
[52]于连栋,朱家圣,陆洋.高精度自由空间光学时频基准传输技术研究进展[J].激光与光电子学进展, 2023,60(3):126-134.
[53] JANG H, KIM B S, CHUN B J, et al. Comb-rooted multichannel synthesis of ultra-narrow optical frequencies of few Hz linewidth[J]. Scientific Reports, 2019, 9:7652(1-8).
[54] KANG H J, YANG J, CHUN B J, et al. Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link[J]. Nature Communications, 2019, 10:12443-12450.
[55] YANG J, LEE D I, SHIN D C, et al. Frequency comb-tocomb stabilization over a 1.3 km free-space atmospheric optical link[J]. Light-Science&Applications, 2022, 11(1):2207-2216.
[56] HOU D, ZHANG D N, SUN F Y, et al. Free-space-based multiple-access frequency dissemination with optical frequency comb[J]. Optics Express, 2018, 26(15):19199-19205.
[57]侯冬,张大年,孙富宇,等.高精度自由空间时间与频率传递研究[J].时间频率学报, 2018, 41(3):219-227.
[58] YANG H L, WANG H F, WANG X Y, et al. Picosecondprecision optical two-way time transfer in free space using flexible binary offset carrier modulation[J]. Osa Continuum, 2020, 3(5):1264-1273.
[59] YANG H L, ZHANG S K, ZHAO H, et al. Phase-coherent asynchronous optical sampling system[J]. Optics Express,2020, 28(4):37040-37048.
[60] SHEN Q, GUAN J Y, ZENG T, et al. Experimental simulation of time and frequency transfer via an optical satellite-ground link at 10-18 instability[J]. Optica, 2021,8(4):471-476.
[61] SHEN Q, GUAN J Y, REN J G, et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 2022, 610(7933):661.
[62] ZHANG Q, XU F H, CHEN Y A, et al. Large scale quantum key distribution:challenges and solutions[J].Optics Express, 2018, 26(18):24260-24273.
[63]沈奇,戴辉,龚云洪,等.量子信息技术在时频传递中的应用[J].北京电子科技学院学报, 2019, 27(3):1-9.
[64] CAO Y, LI Y H, YANG K X, et al. Long-distance freespace measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2020, 125(26):1-14.
[65] DAI H, SHEN Q, WANG C Z, et al. Towards satellitebased quantum-secure time transfer[J]. Nature Physics,2020, 16(8):848.
[66] LI S L, YONG H L, LI Y H, et al. Experimental demonstration of free-space two-photon interference[J].Optics Express, 2022, 30(7):11684-11692.
基本信息:
DOI:10.13875/j.issn.1674-0637.2025-01-0036-14
中图分类号:V443;TN929.1
引用信息:
[1]刘东祥,王玉琢,徐倩等.自由空间激光时频传递技术研究进展[J].时间频率学报,2025,48(01):36-49.DOI:10.13875/j.issn.1674-0637.2025-01-0036-14.
基金信息:
国家重点研发计划资助项目(2023YFB3906503)